44,479 research outputs found

    Simple scheme for two-qubit Grover search in cavity QED

    Full text link
    Following the proposal by F. Yamaguchi et al.[Phys. Rev. A 66, 010302 (R) (2002)], we present an alternative way to implement the two-qubit Grover search algorithm in cavity QED. Compared with F. Yamaguchi et al.'s proposal, with a strong resonant classical field added, our method is insensitive to both the cavity decay and thermal field, and doesn't require that the cavity remain in the vacuum state throughout the procedure. Moreover, the qubit definitions are the same for both atoms, which makes the experiment easier. The strictly numerical simulation shows that our proposal is good enough to demonstrate a two-qubit Grover's search with high fidelity.Comment: manuscript 10 pages, 2 figures, to appear in Phys. Rev.

    Codebook Based Minimum Subspace Distortion Hybrid Precoding for Millimeter Wave Systems

    Full text link
    © 2018 IEEE. Hybrid precoding is adopted for millimeter wave (mmWave) communications to offer a good trade-off between hardware complexity and system performance. In this paper, we investigate a codebook based hybrid precoder for single-user mmWave systems with large antenna arrays. We exploit the sparse nature of mmWave channels to transform the hybrid precoding design problem into a vector space distortion optimization problem which is only related to the radio frequency (RF) precoder. A near optimal solution for the RF optimization problem is derived with the assumption of the perfect channel state information (CSI) at the transmitter, which is practically very difficult to obtain. To reduce the requirement of the CSI at the transmitter, we propose the codebook based minimum subspace distortion (MSD) hybrid precoding algorithm, which obtains CSI at the combiner side and returns the index of optimal RF codewords and the baseband precoder through a limited feedback channel. Simulation results are provided and validate the effectiveness of our proposed hybrid precoding algorithm

    Generation of entangled photons by trapped ions in microcavities under a magnetic field gradient

    Full text link
    We propose a potential scheme to generate entangled photons by manipulating trapped ions embedded in two-mode microcavities, respectively, assisted by a magnetic field gradient. By means of the spin-spin coupling due to the magnetic field gradient and the Coulomb repulsion between the ions, we show how to efficiently generate entangled photons by detecting the internal states of the trapped ions. We emphasize that our scheme is advantageous to create complete sets of entangled multi-photon states. The requirement and the experimental feasibility of our proposal are discussed in detail.Comment: 2 Tables, 2 Figures, To appear in Phys. Rev.

    Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage

    Get PDF
    A simple scheme is presented to generate n-qubit W state with rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED through adiabatic passage. Because of the achievable strong coupling for rf-SQUID qubits embedded in cavity QED, we can get the desired state with high success probability. Furthermore, the scheme is insensitive to position inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using present experimental techniques, we can achieve our scheme with very high success probability, and the fidelity could be eventually unity with the help of dissipation.Comment: to appear in Phys. Rev.

    Alternative scheme for two-qubit conditional phase gate by adiabatic passage under dissipation

    Get PDF
    We check a recent proposal [H. Goto and K. Ichimura Phys. Rev. A 70, 012305 (2004)] for controlled phase gate through adiabatic passage under the influence of spontaneous emission and the cavity decay. We show a modification of above proposal could be used to generate the necessary conditional phase gates in the two-qubit Grover search. Conditioned on no photon leakage either from the atomic excited state or from the cavity mode during the gating period, we numerically analyze the success probability and the fidelity of the two-qubit conditional phase gate by adiabatic passage. The comparison made between our proposed gating scheme and a previous one shows that Goto and Ichimura's scheme is an alternative and feasible way in the optical cavity regime for two-qubit gates and could be generalised in principle to multi-qubit gates.Comment: to appear in J. Phys.

    Modeling the functional genomics of autism using human neurons.

    Get PDF
    Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD

    A History of Flips in Combinatorial Triangulations

    Get PDF
    Given two combinatorial triangulations, how many edge flips are necessary and sufficient to convert one into the other? This question has occupied researchers for over 75 years. We provide a comprehensive survey, including full proofs, of the various attempts to answer it.Comment: Added a paragraph referencing earlier work in the vertex-labelled setting that has implications for the unlabeled settin
    • …
    corecore